should be observable, all three cannot be observed simultaneously in any convenient scattering geometry. In the Z(XZ)Y geometry of Fig. 4, a spectral line is observed which weakens and moves to higher energy with increasing stress. It corresponds to the  $1s(A_1) \rightarrow 1s(B_2)$  transition of Fig. 5. In the Z(YZ)Y geometry of Fig. 4, a spectral line which moves to lower fixed energy with increasing stress is observed and corresponds to the  $1s(A_1) \rightarrow 1s(B_1)$  transition of Fig. 5.

Finally, an important characteristic of any uniaxial stress apparatus is the stress homogeneity. In this regard, it can be seen from Fig. 4 that the valley-orbit Raman line, though shifted, is not significantly broadened under the application of the applied stress. This lack of broadening is conclusive evidence of a high degree of stress homogeneity over the focal region  $(150 \mu)$  of the laser beam. For samples with a 1.25 cm length between the cups, the same high degree of homogeneity is observed over regions at least 0.25 mm<sup>2</sup>.

## ACKNOWLEDGMENTS

We thank H. Fritzsche and F. H. Pollak for several useful discussions. We are grateful to E. Anastassakis for a preprint of his paper (Ref. 9) prior to publication. Special thanks are due to H. Krebs for his invaluable technical advice and skill.

## APPENDIX

The pushtube (L) (Fig. 1) must be stable against buckling under the maximum applied compressive force. To determine the threshold for buckling, we treat the pushtube as a hollow cylindrical beam of length L fixed at one end as shown in Fig. 6. At the other end, a force W is directed through a point M a distance h below the surface to which the beam is fixed. With reference to the stress apparatus described in this paper, L is the equilibrium length of the pushtube, W is the compressive force and h is the distance from the bottom of the stem (O) (Fig. 1) to the top plate of the bellows section.

Let y(x) be the displacement at height x as shown in Fig. 6. The torque of W about point P is  $\tau = \mathbf{r} \times \mathbf{W} = -rW\hat{k}$ where  $\hat{k}$  is a unit vector directed normal to and out of the plane of Fig. 6. For small displacements

 $s - v \approx r$ 

$$\tan\theta \approx \theta = \frac{\epsilon}{k+L} = \frac{S}{x+h}.$$
 (2)

The torque  $\tau$  on the beam is then

$$= -\left[\frac{\epsilon(x+h)}{L+H} - y\right] W\hat{k}.$$
 (3)

$$|\tau| \leqslant |\tau_{\max}| = |\mathbf{N}|, \tag{4}$$

For stability

$$\mathbf{N} = \frac{YI}{R}\hat{k} \tag{5}$$

Rev. Sci. Instrum., Vol. 45, No. 12, December 1974



is the restoring torque supplied by the beam.<sup>21,22</sup> Here V is the Young's modulus for the material from which the beam is constructed, I is the moment of inertia per unit mass of the beam about a diameter of its circular cross section and Ris the radius of curvature of the beam at point P. For small displacements, the radius of curvature R is given by

$$\frac{1}{R} = \frac{d^2 y}{dx^2}.$$
 (6)

Combining Eqs. (3)-(5) with Eq. (6), we obtain the following differential equation for y:

$$\left[\frac{YI}{W_{\text{max}}}\right]_{dx^2}^{d^2y} + y - \frac{\epsilon(x+h)}{L+h} = 0, \qquad (7)$$

the general solution of which is

$$y = A \sin\left[x\left(\frac{W_{\max}}{YI}\right)^{\frac{1}{2}}\right] + B \cos\left[x\left(\frac{W_{\max}}{YI}\right)^{\frac{1}{2}}\right] + \frac{\epsilon(x+h)}{L+h}.$$
 (8)

Upon applying the appropriate boundary conditions

$$y(0) = y'(0) = 0, \quad y(L) = \epsilon,$$

we obtain

(1)

$$1 = \frac{-1}{L+h} \left\{ \frac{YI}{W_{\text{max}}} \sin L \left( \frac{W_{\text{max}}}{YI} \right)^{\frac{1}{2}} + h \left[ \cos L \left( \frac{W_{\text{max}}}{YI} \right)^{\frac{1}{2}} - 1 \right] - L \right\}, \quad (9)$$

which reduces to

$$\tan\left[L\left(\frac{W_{\max}}{YI}\right)^{\frac{1}{2}}\right] = -\frac{h}{L}\left[L\left(\frac{W_{\max}}{YI}\right)^{\frac{1}{2}}\right].$$
 (10)

The values of h and L appropriate to the stress apparatus described in this paper are h=35.56 cm and L=91.44 cm. The first solution to the above transcendental equation other than  $W_{\rm max} = 0$  is

$$W_{\rm max} = (2.391)^2 \frac{YI}{L^2}.$$

$$h\theta \approx \theta = \frac{e}{h+L} = \frac{e}{h+L}$$

$$\tan \theta \approx \theta = \frac{\epsilon}{h+L} = \frac{S}{x+h}.$$

It is to be noted that, as  $h \to \infty$ , the solution of Eq. (10) tends towards the Euler formula for the buckling of a column with one end fixed and the other end free.<sup>21,22</sup> Now for a hollow tube

$$I = \frac{\pi}{4} (R_2^4 - R_1^4), \tag{11}$$

where  $R_2$  and  $R_1$  are, respectively, the inner and outer radii. Using  $R_1 = 0.635$  cm,  $R_2 = 1.016$  cm and  $Y = 2.0 \times 10^{12}$ dyne/cm<sup>2</sup>,<sup>23</sup> we find

## $W_{\rm max} = 9.72 \times 10^8$ dynes.

The pushtube used in the stress apparatus described herein can therefore withstand an  $8.92 \times 10^8$  dynes compressive force without buckling.

- \*Research supported by the U. S. AEC. General support of the Materials Research Laboratory of the University of Chicago by the
- NSF is acknowledged. <sup>1</sup>F. H. Pollak, in Proceedings of the Tenth International Conference on the Physics of Semiconductors (U. S. AEC, Oak Ridge, TN, 1970), p. 407-17.
- 2M. Cardona, Modulation Spectroscopy (Academic, New York, 1969), pp. 284-300.

- <sup>3</sup>D. K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961).
- W. J. Burke, R. J. Pressley, and J. C. Slonczewski, Sol. St. Comm.
   9, 121 (1971).
- <sup>5</sup>M. Cuevas and H. Fritzsche, Phys. Rev. 137, 1847 (1965).
- <sup>1</sup> Cuevas and II. Intzsche, Phys. Rev. 137, 1847 (1965).
   <sup>6</sup> F. H. Pollak and M. Cardona, Phys. Rev. 172, 816 (1968).
   <sup>7</sup> V. J. Tekippe, H. R. Chandrasekar, P. Fisher, and A. K. Ramdas, Phys. Rev. B 6, 2348 (1972).
   <sup>8</sup>See D. G. Seiler and F. Addington, Rev. Sci. Instrum. 43, 749 (1973).
- (1972) and references therein.
- <sup>9</sup>E. Anastassakis, to be published.
- <sup>10</sup>Crawford Fitting Company, 29500 Solon Road, Cleveland, OH 44139, data sheet No. 4A.
- <sup>11</sup>Schaevitz Engineering Co., U. S. Route 30 and Union Avenue,
- <sup>12</sup>ISchaevitz Engineering Co., U. S. Koute 30 and Union Avenue, Pennsauken, NJ.
   <sup>12</sup>I2 parts ERL-2774, Union Carbide Corporation, Plastics Division, 270 Park Avenue, New York, NY; 13 parts Veramid 140, Allied Resin Products Corp., Weymouth Industrial Park, Pleasant Street, East Weymouth, MA.

- <sup>13</sup>F. H. Pollak, private communication.
  <sup>14</sup>J. Doehler, M. Gorman, and S. A. Solin, to be published.
  <sup>15</sup>J. Doehler and S. A. Solin, Rev. Sci. Instrum. 43, 1189 (1972).
  <sup>16</sup>J. Doehler, P. J. Colwell, and S. A. Solin, Phys. Rev. B 9, 636
- (1974).

- (1974).
  <sup>17</sup>H. Fritzsche, Phys. Rev. 120, 1120 (1960).
  <sup>18</sup>P. J. Price, Phys. Rev. 104, 1223 (1956).
  <sup>19</sup>D. K. Wilson, Phys. Rev. 134A, 265 (1964).
  <sup>20</sup>J. H. Reuszer and P. Fisher, Phys. Rev. 165, 909 (1968).
  <sup>21</sup>R. P. Feynman, R. B. Leighton, and Matthew Sands, *The Feynman* Lectures on Physics (Addison-Wesley, Palo Alto, CA, 1964), Sec. 38.
  <sup>22</sup>J. A. Cronin, D. F. Greenberg, and V. L. Telegdi, University of Chicago Graduate Problems in Physics (Addison-Wesley, Reading, MA., 1967), p. 102.
- <sup>28</sup>Handbook of Chemistry and Physics (Chemical Rubber Publishing, Cleveland, OH, 1961), 43rd ed., p. 2169.
   <sup>24</sup>T. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).